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Nonlinear noise reduction using reference data
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We introduce a method to clean uncorrelated deterministic and stochastic noise components from time
series. It combines recently developed techniques for nonlinear projection with properties of the wavelet
transform to extract noise in state space. The method requires that time series are generated by a dynamical
system which is at least approximately deterministic and that they are recorded together with a reference signal.
Its efficiency was tested on both simulated signals and measured magnetic fields of the heart. Convincing
results are obtained even at low signal-to-noise ratios.
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Time series representing the sampling values of an
served dynamical process allow one to analyze the unde
ing dynamics. Generally, time series are contaminated w
noise so that a suitable filtering is required prior to furth
data processing@1,2#. In many physical experiments the s
multaneous recording of reference time series is poss
The reference is provided by an additional sensorR that
records mainly the noise whereas the main sensorS records
both the signal and the noise. In general,R andS will record
different projections of the noise due to their spatial sepa
tion. This setup is used in various fields, e.g., in optical@3#,
acoustical@4#, or geophysical@5# applications. It is particu-
larly helpful in the case of high-amplitude deterministic d
turbances with discrete frequency peaks in the power s
trum; see, e.g.,@6,7#. In typical field experiments thes
deterministic disturbances are mainly caused by the 50 o
Hz interference and its harmonics. If the noise is uncor
lated with the signal, we can write

S5~s1 , . . . ,sN! with sn5xn1en
s , ~1!

R5~r 1 , . . . ,r N! with r n5en
r ,

wherexn denotes the pure signal anden
s anden

r the superim-
posed noise at timen, respectively. Bothen

s anden
r can rep-

resent deterministic (deten
s , deten

r ) as well as stochastic
(stochen

s , stochen
r ) disturbances. Usually, the two sensors ha

different sensitivities anden
s anden

r are not identical. In ad-
dition, their spatial distance makes a matching ofen

s anden
r

very difficult. Thus, a simple subtraction may lead to ar
facts in signal reconstruction. A suitable strategy is to de
mine coupling factors in the time or frequency domain.
common method to determine these factors is the applica
of Wiener filters that utilize signal averages in the frequen
domain@1#. This, however, requires initial knowledge abo
the signal that is often not available at high noise levels.

Considering these problems, an approach independe
the different sensitivities of the sensors appears to be ad
tageous. In Ref.@8# a geometric approach for noise reducti
in deterministic chaotic data was introduced. It is based o
1063-651X/2001/63~3!/036209~4!/$15.00 63 0362
b-
y-
th
r

le.

-

c-

0
-

e

r-

n
y

of
n-

a

state space reconstruction and carries out local project
onto a noise-free subspace. These projections are us
performed by initially fixing the dimension of the subspa
and by estimating the preferred direction of trajectories us
a singular value decomposition@9#. However, data limita-
tions can make it difficult to identify the principal direction
for small neighborhoods in relatively high-dimension
spaces. With a suitable set of given basis functions, only
coefficients need to be determined, which is much less
manding on the data. The discrete wavelet transform@10#
provides a good choice, suitable for smooth functions as w
as for singularities. Moreover, hard or soft thresholding
wavelet coefficients is well suited for signal recovery@11#
even in state space@12#.

In this article we show that local projections in state spa
using wavelets represents an improved method for nonlin
noise reduction. This holds true even for high noise am
tudes if the experimental setup permits the recording o
reference signal. To demonstrate the efficiency of t
method we have used it on simulated and measured ca
graphic data.

Let sWn5(sn , . . . ,sn2(m21)t)PS and rWn5(r n , . . . ,
r n2(m21)t)PR be vectors in the reconstructed state space
S and R wheret is a time delay andm an embedding di-
mension. Appropriate choices ofm andt enable unfolding of
the trajectories inS andR.

For the first step of our denoising procedure we assumexn

and en
s are statistically independent, whileen

s and en
r are

strongly correlated. This correlation need not be linear,
we assume that there is a strict functional relationship. F
thermore, we assumexn and deten

s to be confined to different
subspacesS x and S det in S with dimensionsdSx!m and
dSdet!m. In order to identifyS x and S det we determinek

nearest neighbors (rWn1
, . . . ,rWnk

) of rWn in R. Every rWn has a

temporally correspondingsWn in S and so do its neighbors. I
we now treatxn as a distortion of the deterministic nois
trajectories inS temporally corresponding neighbors ofrWn
are mainly displaced inS x. We take this as a criterion to
identify S x and S det. Note that different properties of th
©2001 The American Physical Society09-1



eaks due to

te

KARSTEN STERNICKELet al. PHYSICAL REVIEW E 63 036209
FIG. 1. ~a! shows the original ECG and~b! its corresponding Fourier spectrum. The effect of the 50 Hz notch filter is obvious.~c! depicts
the noise-contaminated signal. The superimposed noise causes a general increase of the Fourier spectrum as well as sharp p
deterministic noise components~d!. The result of noise reduction is shown in~e!. The cleaned time series is almost free of artifacts. In~f!
line 1 illustrates the effect of the first noise reduction step@the sharp noise peaks disappeared, cf.~d!# whereas line 2 shows the comple
correction.
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applied measuring systems keep the relationship of ne
bors of rWn in S unchanged: different amplitude offsets inS
andR lead to tangential shifts of all trajectories, phase sh
betweenS and R lead to spatial rotation, and different am
plitudes in the two time series lead to spatial expansion.

To separateS x andS det we assume that both are spann
by different translations and dilatations of a mother wave
Let cW n5(cn,1 ,cn,2 , . . . ,cn,m) denote the wavelet transform
of sWn andcW n1

, . . . ,cW nk
the wavelet transforms of its neigh

bors. To identifyS det, the center of mass of eachcW n and its
neighbors is calculated. HereCi(n)5^cW n ,cW n1

, . . . ,cW nk
& i

defines thei th center of mass component ands i
2(n) the cor-

responding variance. We expect that the ratioCi(n)/s i
2(n) is
03620
h-

s

t.

smaller forS x than forS det. Thus, the shrinking condition

c̃n,i5H cn,i , uCi~n!u>2lR

s i~n!

Ak11

Ci~n!, else

~2!

defines a projection ofS ontoS det. HerelR denotes a cutoff
value that depends on specific properties of the m
sured data ~1!. The inverse wavelet transform ofc̃n

5(c̃n,1 ,c̃n,2 , . . . ,c̃n,m) allows reconstruction ofen
det so that

a simple subtraction fromS results in a time seriesŜ. Its state
9-2
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FIG. 2. ~a! shows the MCG sequence recorded outside a shielding room. Only the main component of the heart signal (R wave! is visible.
The width of the 50 Hz peak in the corresponding Fourier spectrum~b! actually prohibits the application of a notch filter.~c! exhibits the
reference signal and~d! its Fourier spectrum. The noise reduced MCG sequence~e! even shows details of the heartbeat and an alm
noise-free baseline. The corresponding Fourier spectrum is given in~f!.
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spaceŜ is now dominated by the determinism of the sign
xn , and the remaining disturbances are caused by stoch
noise componentsen

stoch only.
In the second step,en

stochis eliminated using our procedur
once again, but this time we determine the nearest neigh

( ŝWn1
, . . . ,ŝWnk

) in Ŝ and calculate their wavelet transform

For the shrinking condition~2! we now uselS instead oflR

to define a projection ofŜ onto a noise reduced subspaceS̃.
Finally, the inverse wavelet transform recovers the de
vectors from which the cleaned time seriesS̃ can be recon-
structed.

To demonstrate the efficiency of this noise reduct
scheme we first apply it to simulated signals. We use
electrocardiographic~ECG! data of a healthy person re
corded at 200 Hz as the pure signal recorded by the m
03620
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sensor. The ECG was prefiltered by a 50 Hz notch filter a
a second-order low-pass filter at 100 Hz@Figs. 1~a! and 1~b!#.
We add white noise with an amplitude variance of 30%
ferred to the ECGs variance. The deterministic noise h
frequency peaks at 162

3 Hz, 50 Hz ~power supply and sub
harmonics!, and 60 Hz~signal analysis systems! with an am-
plitude variance of 100%@see Figs. 1~c! and 1~d!#. Gener-
ally, these frequencies are the strongest disturbance
overlay physiological measurements. We generate the re
ence time series by creating noise using the same param
as mentioned above, but additionally with variations in a
plitude and a constant phase shift for the deterministic no
components. We define a noise reduction coefficient by

r5A^~si2xi !
2&

^~ s̃i2xi !
2&

, ~3!
9-3
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wherexi ,siPS, ands̃iPS̃ denote thei th components of the
pure signal, the contaminated time series, and the noise
duced signal, respectively. The applied filter settings con
of an embedding dimension ofm5128, a time delay oft
51 sample point, the number of nearest neighbors ok
520, and the coiflet 4 mother wavelet@13#. Empirically, we
determine thresholding parameterslR50.75 andlS51.0 as
most appropriate, resulting inr514.56. Figures 1~e! and 1~f!
show that the baseline between the heartbeats~as a good
indicator for the noise reduction quality! is almost noise-free
Therefore, our method performs both signal preservation
considerable noise reduction.

As an example of measured data, we analyze 5 s ofmag-
netocardiographic~MCG! data @cf. Figs. 2~a! and 2~b!# re-
corded with a high-Tc superconducting quantum interferen
device ~SQUID! outside a shielding room@14#. Two axial
gradiometers of first order with 7 cm baseline were moun
at a distance of 7 cm one above the other. In this setup
top gradiometer records the reference signal@cf. Figs. 2~c!
and 2~d!#. To increase the signal-to-noise ratio SNR th
measurement generally is performed in a shielding room
though these rooms are expensive and immobile. In an
shielded environment it is difficult to detect any signa
originating from the observed object.

Figures 2~e! and 2~f! show the time series along with it
corresponding Fourier spectrum resulting from the presen
s

s
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noise reduction procedure using the following parameter
sampling rate of 1000 Hz, an embedding dimension ofm
5512, a time delay oft51 sample point, the number o
nearest neighbors ofk520, the coiflet 2 mother wavelet, an
thresholding parameterslR50.5 andlS50.5. In the recon-
structed MCG even small details of the heartbeat are
vealed. Again the baseline between the heartbeats is alm
noise free.

In summary, the technique described substantially eli
nates deterministic and stochastic noise from measured
series. This holds true even if the noise amplitude is of
same order of magnitude as~or higher than! the signal itself.
Even for physiological data recorded in an unshielded en
ronment its success could be demonstrated. Hence, the
posed noise reduction method represents an excellent a
native to similar techniques already in use@15#. Further
improvements are currently being developed to accele
our method for real-time application in order to control e
perimental setups.
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MCG data recorded at the Forschungszentrum Ju¨lich, and to
R. Andrzejak, P. Grassberger, F. Mormann, and C. Rieke
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